
!ro$ &'nd*o+ to Pl'yground2 3yn'$ic 6irtu'l 7n8iron$ents in the <rid

"atarzyna "eahey
A"#$%%& N)*+$%), L).

 A"#$%%&/ IL
 1&)2&34567.)%,.#$9

 "arl Doering
U%+9&"7+*3 $; C),+;$"%+)

 R+9&"7+>&/ CA
 1>$&"+%#467.?6".&>?

 Ian Foster
A"#$%%& N)*+$%), L).

 A"#$%%&/ IL
;$7*&"4567.)%,.#$9

=*str'ct

M?62 &AB&"+&%6& 2)7 .&&% #)+%&> C+*2 *2&

B"$*$6$,7)%> 5&62)%+757 %&&>&> ;$" >+76$9&"3)%>
),,$6)*+$% $; "&5$*& 6$5B?*)*+$%), "&7$?"6&7.
H$C&9&"/ *2& B"&B)")*+$% $;) "&5$*& 6$5B?*&" ;$"
?7& .3) >+7*"+.?*&>)BB,+6)*+$%),7$ "&E?+"&7 *2&
6"&)*+$% $;)%)BB"$B"+)*& &A&6?*+$% &%9+"$%5&%*/
C2+62 "&5)+%7)%)> 2$6)%> $;*&% 6,?573 B"$6&77.
W& B"B7& 2&"&) 6$>+;+6)*+$% $; *2& +%*&")6*+$%7
"&E?+"&> *$ %&#$*+)*& *2& 6"&)*+$% $; %&C &A&6?*+$%
&%9+"$%5&%*7. I% ."+&;/ C& 5$>&, >3%)5+6 9+"*?),
&%9+"$%5&%*7 GDIE7K)7 ;+"7*-6,)77 &%*+*+&7 +%)
>+7*"+.?*&> &%9+"$%5&%*/ C+*2 G"+> 7&"9+6& +%*&";)6&7
>&;+%&> *$ %&#$*+)*& 6"&)*+$%/ 5$%+*$" B"$B&"*+&7/
)%> 5)%)#& ,+;&*+5&. W&),7$ 72$C 2$C 7?62 DIE7
6)% .& +5B,&5&%*&> +%) 9)"+&*3 $; *&62%$,$#+&7N
7)%>.$A&7/ 9+"*?), 5)62+%&7/ $" 7+5B,3 U%+A
)66$?%*7N)%> &9),?)*& 6$7*7)77$6+)*&> C+*2 *2&7&
>+;;&"&%*)BB"$)62&7. DIE7 B"$9+>&) .)7+7 ;$" .$*2
6?7*$5+O)*+$% $;) "&5$*& 6$5B?*&" *$ 5&&* ?7&"
%&&>7)%>),7$ &%;$"6&5&%* $; "&7$?"6& ?7)#&)%>
7&6?"+*3 B$,+6+&7. T2&3 6)%),7$ 7+5B,+;3 *2&
)>5+%+7*")*+$% $; 9+"*?), $"#)%+O)*+$%7 GIO7K/ .3
),,$C+%# %&C &%9+"$%5&%*7 *$.& 6"&)*&>
)?*$5)*+6),,3/ 7?.R&6* *$,$6),)%> IO B$,+63. T2?7/
DIE7 2)9& *2& B$*&%*+), *$ "&,+&9& 5?62 $; *2&
6?""&%*)>5+%+7*")*+9& .?">&% +%9$,9&> +% B"$9+>+%#
)%> ?7+%# G"+> "&7$?"6&7.

> ?ntroduction

The dynamic acquisition and use of remote
computers requires policy-driven resource
management mechanisms that can establish new
computational environments without human
intervention [1]. Grid technologies such as the
GRAM remote access protocol [2], single-sign-on
[3], and agreement negotiation [4] are significant

steps towards this goal. However, the problem of
establishing and managing execution environments
on remote computers remains. The common
approach of using static user accounts has high
administrative costs and creates environments that do
not reflect dynamically changing policies, allow for
customized execution environments, or provide QoS
enforcement capabilities. Experiments show that
virtual machine technology [5-8] can be used to
address some of these issues, but no standardized
mechanisms have been defined for interacting with
such virtual machines.

We believe that the solution to these problems is
to introduce abstractions, protocols, and tools that
allow remote execution environments to be created
and managed as first-class entities. Thus, users will
be able to negotiate the creation of new execution
environments, administrators will be able to specify
the policies that govern their use, and various entities
can be authorized for monitoring and management.
We expect that in implementing such ideas, we can
exploit recent advances in virtual machine and
sandbox technologies.

These observations motivate the work presented
in this article, which comprises three distinct but
interrelated thrusts.

First, we show how dynamic virtual environments
(DUEs) can be modeled as Grid services, thus
allowing a client to create, configure, and manage
remote execution environments using common
protocols.

Second, we show how such DUEs can be
implemented via a variety of technologies, including
dynamic accounts and virtual machines, to obtain
access to a range of virtualization and resource
management functions. We also examine how DUEs
can be implemented within the context of a particular
Grid middleware framework, Globus Toolkit 3
(GT3).

Third, we present an experimental evaluation of
various DUE implementation technologies. Our
results allow us to evaluate the impact of technology
choices both in quantitative terms (e.g.,
computational costs and resource usage) and also
respect to other qualitative concerns that arise in Grid
contexts.

The dynamic creation of remote environments as
user accounts has been previously investigated [9-
13], as has the use of virtual machines to model
virtual resources [8, 14, 15]. Our work is
distinguished by its focus on creating, configuring
and managing execution environments as first class
entities, that can be implemented via different
technologies as dictated by the needs of sites and
organizations.

@ 3yn'$ic 6irtu'l 7n8iron$ents

We speak first to the DUE abstraction, its
representation in terms of Grid service interfaces, and
our prototype implementation within GT3.

Our goal in introducing the DUE abstraction is to
codify the interactions required for a client to create,
monitor, manage, and ultimately destroy a remote
execution environment. Our approach is to model
individual DUEs as stateful Web services [16] (in
OGSI [17], our focus here) or, as we shall consider in
future work, as WS-Resources [18]. We adopt
OGSI/WSRF because DUE management operations
map conveniently to OGSI/WSRF mechanisms. In
particular, OGSI/WSRF lifetime management
mechanisms can be used to manage the creation and
destruction of DUEs, and OGSI/WSRF state
representation and inspection mechanisms can be
used to provide access to descriptions of DUE
properties such as quality of protection, resource
limits, and configuration.

@A> Bre'ting 3yn'$ic 6irtu'l 7n8iron$ents

DUEs are represented as Grid services and
created by DUE factories. As shown in Figure 1, a
factory first authorizes the request to create a DUE
with the requested properties. An authorization
failure results in an exception. On success, the
factory performs the following actions: (1) creates a
DUE Grid service, (2) initializes its implementation
(this could for example involve creating a Unix
account or a new J2EE container) and sets its
properties (such as its termination time), and (3)
records access and other usage policy for the newly
created DUE. As a result of the creation process a

Grid service handle (GSH) representing the newly
created DUE is returned to the client.

DUE creation, configuration, and deployment
should in principle be separate. However, in our
current prototype DUEs are configured and deployed
at creation time. The creation process is securely
logged to allow for audit.

DUE termination is managed via the use of OGSI
lifetime management mechanisms, which allow the
user to request both explicit destruction and implicit
(soft-state, or lifetime based) termination.
Termination involves cleaning up the state associated
with this DUE: policies may be revoked and
information relevant to DUE erased. Termination
might involve deleting (or returning to a pool) a
dynamically created account or virtual machine.

@A@ 3yn'$ic 6irtu'l 7n8iron$ent &er8ices

The DUEService is a Grid interface to a transient,
dynamically created execution environment.
DUEService shares the properties of any other Grid
service: it is identified by a handle, subject to soft-
state lifetime management, and exposes its properties
(such as the disk space or memory associated with
the environment, and/or installed software) through
Service Data Elements (SDEs). The interface allows
the client to manage the DUE, by for example
extending its original termination time, requesting
more disk space, or installing software. These
requests are authorized in the context of credentials
that may be dynamically granted and adjusted [19].

@AC 367s 'nd <rid Desource M'n'ge$ent

The process of job submission against a DUE is
illustrated in Figure 1:
1. The client sends a request for DUE creation to

the factory. The request may include the
properties and lifetime of the DUE, as well as
the client’s credentials.

2. The factory authorizes the request. If the client is
not authorized to create the environment as
requested, an exception is thrown. Otherwise, a
DUE service is instantiated.

3. At instantiation, the DUE service creates an
execution environment in an implementation-
dependent way. New policy is recorded allowing
or restricting access and management of the
newly created environment.

4. A handle to the DUE service is returned to the
client.

5. At any time during the DUE lifetime, authorized
clients may inspect or manage its properties.

6. At any time during the DUE lifetime, authorized
clients may perform operations on the DUE (for
example, request execution of programs) as
authorized by the associated access policy.

7. When the DUE service is destroyed, all
associated state is deleted.

Figure 1: Interactions of DUEs with Grid resource
management: the policy evaluation points (PEP)
authorize client’s requests.

@AF ?pleent'tion of 367s Iithin <TC

Creating an execution environment on a remote
host is a sensitive operation requiring special
privileges; it is therefore critical that it should be
carried out securely. In our implementation the
execution environment is created by the DUE service
running under a reserved Unix account (called
#,$.?7). The creation request (as well as management
requests on the DUE service) is authorized by an
application-specific authorization based on the
requestor’s Grid credential and a callout to an access
control list. The DUE service then uses a setuid
program, executable only by #,$.?7, that validates its
arguments and refuses to undertake any actions
contrary to a predefined policy (for example, only
accounts within a prespecified UID range may be
created and destroyed), thus limiting risk to other
accounts on the system should the #,$.?7 account be
compromised.

The access policy to the execution environment is
recorded in the GT3 gridmapfile. Although more
complex policies are envisioned, in the current
implementation the policy simply gives the right to
use the environment to the Grid entity that created it.
For the purposes of audit, the creation process is
securely logged using the GT3 logging mechanism.

DUE termination implies that the entire DUE
state is cleaned in an implementation-specific way. In

addition, any state associated with the Grid
infrastructure has to be cleaned. We remove access
policies from the gridmapfile, and clear entries from
the GT3 port mapping file which assists in hosting
environment restoration in case it was not cleanly
shut down. This eliminates attempts to recreate the
environment for nonexistent (or worse yet, different)
user.

In order to integrate DUEs with the GT3’s Grid
Resource Management System (GRAM) [2], we
extended the GRAM protocol to include a handle to a
specific DUE with the description of remote actions
to be performed. For backward compatibility, if the
handle is not presented, then the first relevant
mapping in the gridmapfile is used. We also changed
its implementation to integrate DUE access policies
into its authorization mechanism.

Introducing DUEs splits the process of job
submission into two phases: creation and deployment
of a DUE and job submission against that
environment. While creation of a DUE simply
replaces the process of obtaining an user account, it
can still be seen as complex by users who are
interested in executing things quickly on new
resources. For this reason, we have also provided a
simplified job submission facility in which the user
delegates its credentials to GRAM which then
automatically obtains an execution environment for
the user, executes the request, and terminates the
environment. Since the DUE is destroyed, this
mechanism does not allow the user to preserve state
between different executions but provides a
significant simplification.

C 367 ?pleent'tions

We expect that the DUE implementations will be
chosen based on the security, performance, cost and
flexibility requirements of different sites. We have
investigated a range of different options and decided
to focus on a group of implementations meeting the
following criteria:
! G&%&"),+*3: in order to accommodate the largest

possible set of codes, the implementation should
be generic rather than focused on a specific
technology or language (such as the Java Uirtual
Machine (JUM) [20] for example).

! N$%-+%9)7+9&: while techniques such as software
fault isolation [21, 22], and proof-carrying code
[22] are viable options for DUE implementation
they require the system to modifying binary or
source of application code which may not be
acceptable to some Grid users.

C
lie

nt

G1K 6,+&%* 6"&>&%*+),7

G4K DIE 7&"9+6& 2)%>,&

create local
en*ironment

G3K

access polic/

GVK DIE 5)%)#&5&%*

GWK DIE 2)%>,& X "&E?&7*

G2K

01E 3actor/P
E

P

01E 5er*iceP
E

P

6rid 8esource
Mana;er

8esource
mana;ement

action

GZK DIE *&"5+%)*+$%

C
lie

nt

G1K 6,+&%* 6"&>&%*+),7G1K 6,+&%* 6"&>&%*+),7

G4K DIE 7&"9+6& 2)%>,&G4K DIE 7&"9+6& 2)%>,&

create local
en*ironment

G3K

access polic/

GVK DIE 5)%)#&5&%*GVK DIE 5)%)#&5&%*

GWK DIE 2)%>,& X "&E?&7*GWK DIE 2)%>,& X "&E?&7*

G2KG2K

01E 3actor/P
E

P

01E 3actor/P
E

P
P

E
P

01E 5er*iceP
E

P

01E 5er*iceP
E

P
P

E
P

6rid 8esource
Mana;er

8esource
mana;ement

action

GZK DIE *&"5+%)*+$%GZK DIE *&"5+%)*+$%

! P"$*&6*+$%: the DUE implementation should
provide suitable levels of protection between
users (not allowing users read each other’s files
for example) as well as between the user and
resource (not allowing a user to gain superuser
privileges on a resource)

! E%;$"6&5&%*: an implementation should offer a
range of enforcement options, i.e., allow
enforcing disk quotas or CPU share.

! S*)*&: the ability to preserve state associated with
a specific environment, ranging from
environment settings to execution state, is an
important option of execution environments
especially if we consider migrating them
between resources.

Given these criteria, our exploration of
technologies focused on three kinds of technologies:
Unix accounts, sandboxes and virtual machines.
Sandboxes provide secure environments restricting
executing code to a certain protection environment.
"ernel-level sandboxes [23, 24] are efficient, but are
possible only where the kernel is available for
modification and require sites to run a custom
installation of the operating system. User-level
sandboxes [25, 26] rely on finding a way to prevent
the user from bypassing the interception mechanism
which is typically expensive (on the order of 40f for
ptrace-based systems [27]). For our evaluation, we
selected the UServer technology [7] using kernel-
level modifications (also used by PlanetLab [15]).
Unlike a sandbox which strives only to confine a
user’s activity on a given machine to a limited subset
of a resource, a virtual machine (UM) provides an
abstraction of the physical system itself so that
multiple operating system can coexist on the actual
machine sharing its resources. In our original
experiments, we started out with User Mode Linux
(UML) [28] but encountered difficulties running
certain Java software packages. UMware [5] proved
a more reliable choice.

The sections below contain a description of the
implementation of the DUEs for each of the three
local enforcement vehicle used: Unix accounts,
UServer, and UMware. The implementation aspects
include environment creation/deployment,
destruction, and the management aspects specific to
each technology. Another common feature of interest
is how a Grid coordination entity on a given machine
(such as a local GRAM installation needed to start
jobs) can interact with those implementations (for
example: start a user hosting environment). Although
we currently deploy DUEs on creation, we also
investigated capability of a technology for preserving

state to accommodate cases where a DUE could be
redeployed in a different setting.

CA> Kni+ =ccounts 's 367 ?pleent'tion

Unix accounts [9-13] can be created dynamically
using standard systems tools, or allocated from a pool
of pre-generated accounts. The former approach has
the advantage that accounts can be flexibly created
based on need, but requires a secure process for
account creation. In addition, depending on the
mechanism used, the implementation needs to be
careful to respect the assumptions of a local account
management system. Pre-generating accounts is
limited in the number of users this method can
service. Using either method, we want to avoid
mapping two different Grid identities to the same
local account in order to avoid problems of audit.

In our current implementation, we create accounts
on the fly by modifying the system password file. We
could also update a NIS/YP password database to
create accounts valid across a cluster. To destroy an
account, all processes running under the account are
killed, all files associated with the account are erased,
and then the corresponding entry is removed from the
password file. In order to avoid the need for a system
sweep every time an account is destroyed, accounts
are created with limited write privileges.

The enforcement capabilities offered by standard
Unix tools are limited. Disk space usage can be
enforced dynamically by using the !uota command.
In addition, chroot restricts a user to a subtree of
the host filesystem which can be useful if we want to
restrict the account to its home directory. The
setrlimit system call is available for setting more
fine-grain limits on maximum CPU time, file size,
memory usage and number of open files and
processes, but few operating systems fully enforce
the limits.

The static user state for a Unix account is
relatively easy to manage: files belonging to a certain
account (including symbolic links) can be stored in a
designated place. The management of execution state
would require further support from the local system
in the form of checkpointing procedures.

CA@ 6&er8er 's 367 ?pleent'tion

UServer [7] provides Linux kernel-based virtual
servers via the addition of security contexts to the
kernel, a small number of new system calls, and
management utilities. Inside a UServer security
context, processes can only see other processes in the

same context, superuser capabilities are restricted,
filesystem access may be confined to a subtree of the
server’s filesystem, and networking and interprocess
communication can also be restricted.

Creating a new UServer DUE involves creating a
root filesystem for the UServer. To do that, a copy of
a precreated minimal filesystem (containing GT3 and
supporting software and libraries) is made. To reduce
disk space usage (as well as copy time), hard links
are used rather than a true copy, and file attributes are
set such that a user (including “root”) in one UServer
cannot modify files shared by other UServers.
However, with the immutable attribute set, not only
can a file not be modified, but it cannot be removed
and replaced with a modifiable copy, either. To
remedy this, the UServer kernel patch introduces a
new attribute bit, immutable-linkage-invert, which
when set allows immutable files to be unlinked, so
that UServer users may remove and replace files
within their own filesystem tree without affecting
other UServers. Once the UServer root filesystem is
ready, it can be activated by establishing a
corresponding new security context, and launching
the user hosting environment inside that context. To
destroy a UServer environment, all processes running
in the associated security context are terminated, and
the corresponding filesystem tree is deleted.

Since all processes associated with a UServer
environment share a unique security context ID, the
kernel scheduler could potentially be modified to
enforce per-environment CPU utilization limits. The
current implementation simply prevents one UServer
from starving another, but could be extended.
Likewise, the possibility exists for adding per-
environment memory usage enforcement. Per-
environment disk usage is enforced via per-context
quotas, an extension of standard user/group quotas.
Optionally, network usage is restricted by binding
environments to separate IP addresses and then using
the Linux kernel firewalling and traffic shaping
capabilities exactly as for the UMware DUE
implementation.

UServer does not provide capabilities for state
management beyond that provided by a Unix
account.

CAC 6MI're 's 367 ?pleent'tion

UMware [5] is a commercial virtual machine
implementation available in server and workstation
versions. For our evaluation we used the workstation
version. Physically, the UMware virtual machine
consists of a directory on the host containing a set of

files, including UM configuration information and
virtual disk image(s).

In order to avoid repeating installation
information for each DUE creation, we precreated a
“master” UMware virtual disk, with a minimal Linux
and GT3 installation, which is then used by the
individual sessions. The UM-based DUE is activated
by a launching script similar to the one used in the
Unix account implementation. Inside the UM, at the
end of the boot sequence, the user hosting
environment is then created. Its creation is
complicated by the fact that command-line arguments
required by the hosting environment for initialization
can no longer be passed to it directly from the
launching script, because the launching script and
hosting environment are running on two separate
machines. For reasons of simplicity, we
circumvented this problem by passing the
information covertly (by encoding information in the
MAC address of the virtual machine, which is
modifiable), although implementing a DHCP-like
discovery service would provide a more elegant
solution.

The deactivation process is complicated by the
fact that UMware Workstation provides no published
interface for shutting down a particular UM from the
host. Our workaround was to run a shutdown service
inside the UM, which the host could then contact to
shut down the UM. This works as long as the user
owning the UM does not have root access inside the
UM (otherwise he could kill the shutdown service).
Once the UM is no longer running, a DUE may be
destroyed by deleting the directory on the host
containing the files corresponding to the UM.

UMware provides only static enforcement of
memory and disk usage. UMware workstation also
does not support any capability for CPU
management. (This capability is supported by
UMware ESk Server.) If multiple virtual machines
are used, UMware can be configured to use
NAT/bridged network Since each UM has its own
virtual MAC and IP address, the host can do full
firewalling and traffic shaping per-UM (for the Linux
capabilities, see [29]). In this setting difficulties arise
due to the fact that the UM’s private IP address
and/or port number may be exposed at a higher level
in the network protocol stack (for example as part of
the Grid Service Handle (GSH)), which standard
NAT cannot handle. We managed to deal with them
to some extent through careful configuration of the
toolkit.

Finally, while UMware does implement a
promising solution for user state preservation and
restoration, we were unfortunately not able to take

advantage of it because the product does not expose a
protocol for accessing it but exposes it only through a
Graphical User Interface (GUI).

F Bo$p'rison

In addition to qualitative comparison of different
implementations, we conducted a quantitative
analysis estimating the impact of different
implementations on the user programs run within
those environments as well as their efficiency of
resource usage. We conducted our evaluation on a
Pentium 4 3.0 GHz machine with 1 GB RAM,
running Red Hat Linux 9.0 (kernel 2.4.22, gcc 3.2.2)
and Globus Toolkit 3.0.2. We implemented DSUs
using Linux accounts, UServer 0.26, and UMware
Workstation 4.0.5.

We first estimated the impact on the performance
using as benchmark a scientific compute-intensive
application called EFIT [30] representative of the
needs of one of the experimental communities using
Grids. The application is mostly CPU-bound with
minimal access to disk.

<

<=>

<=?

<=@

<=A

B

B=>

BB<B<<Ct BB<B<DCt BB<B<ECt

FGII acct
1ser*er
1MJare

Figure 2: Comparison of different EFIT runs
executing directly on Unix, under UServer and
UMware. The times on Y axis are normalized to the
Unix run.

The results summarized in Figure 2 show
execution times directly over the operating system,
under UServer, and under UMware. Each grouping
represents runs for different dataset and application
configurations. For each run, the data shows the
mean of five runs per selected data set, normalized to
the execution time directly on the operating system.
The runs took approximately 100 sec each, with
standard deviations between 0.2 sec and 1.2 sec.
UMware runs took 6f longer; there was no
statistically significant difference between direct
operating system runs and UServer runs. The time
shown includes the application execution time only,
as measured via the gettimeofday() system call, and
does not include DUE creation times. The
measurements confirm the result presented in [8]; the

performance impact of the selected enforcement
technologies on compute bound applications is
relatively small.

We next compared create/destroy times for the
different technologies as shown in Table 1.
Measurements do not include time taken to invoke
the factory service, which is independent of the
implementation type, but simply represents the time
elapsed for the implementation-specific callout for
environment creation (as measured within
theservice).

Table 1: DUE create/destroy times
 Linux UServer UMware
Create 100 ms 360 ms 14-52 sec
Destroy 70 ms 200 ms 3-38 sec
Creating both UServer and UMware DUEs

involves creating a new file system root. Our file
system size was just under 300 MB, including: (1)
minimal Red Hat 9.0 (with stripped-down /bin, /dev,
/etc, /lib, /proc, /sbin, /var): 14,636 "B, (2) Perl 5.6.1
(used by GT3 job execution components): 29,728
"B, (3) Java 2 Runtime Environment 1.4.2: 60,320
"B, and (4) Globus Toolkit 3.0.2: 188,408 "B.
Because UServer uses a copy-on-write technique,
environment creation time as compared to that of
UMware is drastically reduced. Another interesting
measure is the overhead used by these technologies,
in other words, a measure of how efficiently they use
the resource. The results are summarized in Table 2.

For UServer, there is in fact a very small amount
of memory and CPU overhead resulting from the
UServer kernel modifications: the kernel must track
which security context a process is associated with,
and incurs slight overhead in checking the security
context inside relevant system calls. However, this
overhead was sufficiently small as to not show up in
our measurements, and is therefore listed as
negligible. While both technologies induce some
overhead of resource usage, for UMware this
overhead is significantly larger.
 Table 3 summarizes the qualitative differences
among the different technologies. Both UServer and
UMware offer substantial improvement over plain
accounts in terms of protection and sharing. UServer
allows the creation of separate security contexts
which restrict user privileges but allow for sharing of
files. However, all contexts still share the same
kernel. UMware allows each execution environment
to run its own kernel. This requires repeating all
required software installations for each UM running
on the machine: an inconvenience compounded by
potential licensing issues. UServer offers dynamic
enforcement capabilities (or potential of such

capabilities), UMware has only limited static
enforcement capabilities. This however is not the
case for other virtual machine technologies [6].
Although UServer presents a more lightweight
solution in terms of performance, its impact, at least
in our experience, is not significant and can be
expected to decrease as the technology improves. To
balance this, virtual machines offer the potential for
better user state management, which could have
significant benefits for implementing migration in the
Grid environment.

L Bonclusions

We strongly believe that in order to become
successful Grids will need the ability to create and
manage remote execution environments dynamically
and effortlessly. Rather than imposing one
implementation, these environments should be able
to rely on a mix of technologies as acceptable to site
administrators, users and suitable for specific
problems. Different implementations will provide
different functionality ranging from a simple
execution environment to a high degree of
customization (including running the required
operating system kernel on any resource possible
through the agency of true virtual machines).
Different implementations entail different trade-offs
in terms of efficiency, cost, configurability, quality of
protection and other characteristics as discussed
above.

Our exploration of three such implementations
shows that all are roughly acceptable from the point
of view of efficiency for a Grid application without
strong I/O demands. All have shortcomings in the
area of QoS enforcement, but those could potentially
be fixed by similar technologies or more advanced
versions of the same software. The issue of sharing
between the environments presents an interesting
trade-off: on one hand virtual machines allow users
to customize their environments once and then port
them across different machines, on the other this
practice will lead to bulky installations and potential
duplication of much of the software on one real
resource. In those cases, software allowing sharing
between environments, such as UServer, can lead to
more lightweight solutions, but dependent on a
shared infrastructure maintained on a resource by, for
example, the UO.

Finally, it is clear that some of the current
execution environment examples were not designed
with Grids in mind (the lack of exposed protocols in
UMware workstation is an example). While more
research is necessary in order to fully determine the
requirements for an ideal sandbox implementation to
put in the Grid playground, the Grid technologies
themselves will also have to change. The widespread
use of remotely created virtual environments, if
successful, will shift trust from the account screening
process typically applied by the resource owner to
screening process implemented by a virtual

Table 2: Resource overheads (over Linux) of DUE implementations
 UServer UMware

Disk overhead Small: approximately 0.5f Large: 150f - 200f
Memory overhead Negligible Large: 24MB m 1 MB per 32 MB memory allocated per

UM
CPU overhead Negligible Depends on application characteristics (5f and up)

Network overhead Only when restricting
access

Yes: depends on network configuration

Table 3: Enforcement capabilities of selected DUE implementations
 Unix account UServer UMware

CPU usage (seconds) Uia setrlimit() Not at present, but could be added Not enforced
CPU usage (percent) Not enforced Limited: no UServer can starve

another
Not in UMware Workstation,

but enforced in UMware Server
Disk space usage Dynamically

(per-user quotas)
Dynamically (per-context quotas) Statically (virtual disks)

Memory usage No Not at present, but could be added Statically
Network usage No Dynamically (binding contexts to

specific IP addresses)
Dynamically (via UM

configuration and host firewall)

organization which will thereby acquire more
importance as well as responsibility.

M =cNnoIledge$ent

This work was supported by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, SciDAC
Program, U.S. Department of Energy, under Contract
W-31-109-ENG-38.

O Deferences

1. Foster, I., W2)* +7 *2& G"+>] A T2"&& P$+%*
C2&61,+7*. 2002: http://www-
fp.mcs.anl.gov/nfoster/Articles/WhatIsTheGrid.pdf.
2. Czajkowski, "., I. Foster, N. "aronis, C.
"esselman, S. Martin, W. Smith, and S. Tuecke, A
R&7$?"6& M)%)#&5&%* A"62+*&6*?"& ;$"
M&*)6$5B?*+%# S37*&57, in 4*2 W$"172$B $% ^$.
S62&>?,+%# S*")*&#+&7 ;$" P)"),,&, P"$6&77+%#. 1998,
Springer-Uerlag. p. 62-82.
3. Butler, R., D. Engert, I. Foster, C.
"esselman, S. Tuecke, J. Uolmer, and U. Welch,
D&7+#%)%> D&B,$35&%* $;) N)*+$%),-S6),&
A?*2&%*+6)*+$% I%;")7*"?6*?"&. IEEE Computer, 2000.
CC(12): p. 60-66.
4. Czajkowski, "., A. Dan, J. Rofrano, S.
Tuecke, and M. ku, A#"&&5&%*-.)7&> G"+> S&"9+6&
M)%)#&5&%* GOGSI-A#"&&5&%*K I&"7+$% _.
https://forge.gridforum.org/projects/graap-
wg/document/Draft_OGSI-
Agreement_Specification/en/1/Draft_OGSI-
Agreement_Specification.doc, 2003.
5. IMC)"&: http://www.vmware.com/.
6. Barham, P., B. Dragovic, ". Fraser, S.
Hand, T. Harris, A. Ho, R. Neugebar, I. Pratt, and A.
Warfield. `&%)%> *2& A"* $; I+"*?),+O)*+$%. in ACM
S35B$7+?5 $% OB&")*+%# S37*&57 P"+%6+B,&7 GSOSPK.
7. Solucorp, 97&"9&":
http://www.solucorp.qc.ca/miscprj/s_context.hc.
8. Figueiredo, R., P. Dinda, and J. Fortes. A
C)7& ;$" G"+> C$5B?*+%# $% I+"*?), M)62+%&7. in
T2& 23"> I%*&"%)*+$%), C$%;&"&%6& $% D+7*"+.?*&>
C$5B?*+%# S37*&57 GICDCSK. 2003.
9. Hacker, T. and B. Athey, A M&*2$>$,$#3 ;$"
A66$?%* M)%)#&5&%* +% G"+> C$5B?*+%#
E%9+"$%5&%*7. Proceedings of the 2nd International
Workshop on Grid Computing, 2001.
10. "apadia, N.H., R.J. Figueiredo, and J.
Fortes. E%2)%6+%# *2& S6),).+,+*3)%> U7).+,+*3 $;

C$5B?*)*+$%), G"+>7 9+) L$#+6), U7&" A66$?%*7)%>
I+"*?), F+,& S37*&57. in 1_*2 H&*&"$#&%&$?7
C$5B?*+%# W$"172$B. 2001. San Francisco,
California.
11. Talwar, U., S. Basu, and R. "umar. A%
E%9+"$%5&%* ;$" E%).,+%# I%*&")6*+9& G"+>7. in T2&
TC&,;*2 IEEE I%*&"%)*+$%), S35B$7+?5 $% H+#2
P&";$"5)%6& D+7*"+.?*&> C$5B?*+%# GHPDC-12K.
2003. Seattle, Washington.
12. McNab, A., G"+>-B)7&> A66&77 C$%*"$, ;$"
U%+A E%9+"$%5&%*7/ F+,&737*&57)%> W&. S+*&7.
Proceeings of the CHEP 2003 conference, 2003.
13. "eahey, "., M. Ripeanu, and ". Doering.
D3%)5+6 C"&)*+$%)%> M)%)#&5&%* $; R?%*+5&
E%9+"$%5&%*7 +% *2& G"+>. in W$"172$B $% D&7+#%+%#
)%> B?+,>+%# W&. S&"9+6&7 G*$)BB&)"K. 2003.
Chicago, IL.
14. Chase, J., L. Grit, D. Irwin, J. Moore, and S.
Sprenkle, D3%)5+6 I+"*?), C,?7*&"7 +%) G"+> S+*&
M)%)#&". accepted to the 12th International
Symposium on High Performance Distributed
Computing (HPDC-12), 2003.
15. Bavier, A., M. Bowman, B. Chun, D. Culler,
S. "arlin, S. Muir, L. Peterson, T. Roscoe, T.
Spalink, and M. Wawrzoniak. OB&")*+%# S37*&5
S?BB$"* ;$" P,)%&*)"3-S6),& S&"9+6&7. in P"$6&&>+%#7
$; *2& F+"7* S35B$7+?5 $% N&*C$"1 S37*&57 D&7+#%
)%> I5B,&5&%*)*+$% GNSDIK. 2004.
16. Foster, I., C. "esselman, J. Nick, and S.
Tuecke, T2& P237+$,$#3 $; *2& G"+>c A% OB&% G"+>
S&"9+6&7 A"62+*&6*?"& ;$" D+7*"+.?*&> S37*&57
I%*&#")*+$%. 2002: Open Grid Service Infrastructure
WG, Global Grid Forum,.
17. S. Tuecke, ". Czajkowski, I. Foster, J. Frey,
S. Graham, and C. "esselman, G"+> S&"9+6&
SB&6+;+6)*+$%.
18. Foster, I., J. Frey, S. Graham, S. Tuecke, ".
Czajkowski, D. Ferguson, F. Leymann, M. Nally, T.

Storey, W. Uambenepe, and S. Weerawarana,
M$>&,+%# S*)*&;?, R&7$?"6&7 C+*2 W&. S&"9+6&7.
www.globus.org/wsrf, 2004.
19. Foster, I., C. "esselman, and S. Tuecke, T2&
A%)*$53 $; *2& G"+>c E%).,+%# S6),).,& I+"*?),
O"#)%+O)*+$%7. International Journal of High
Performance Computing Applications, 2001. >L(3):
p. 200-222.
20. Lindholm, T. and F. Yellin, T2& ^)9)GTMK
I+"*?), M)62+%& SB&6+;+6)*+$% G2%> E>+*+$%K. 1999:
Addison-Wesley Pub Co; 2nd edition.
21. Wahbe, R., S. Lucco, T. Anderson, and S.
Graham, E;;+6+&%* 7$;*C)"&-.)7&> ;)?,* +7$,)*+$%, in
P"$6. 14*2 S35B$7+?5 $% OB&")*+%# S37*&5
P"+%6+B,&7. 1993.
22. Necula, G.C. and P. Lee. S);& K&"%&,
EA*&%7+$%7 C+*2$?* R?%-T+5& C2&61+%#. in 2%>
S35B$7+?5 $% OB&")*+%# S37*&57 D&7+#%)%>
I5B,&5&%*)*+$%. 1996. Seattle, WA.
23. Cowan, C. and D. Wagner, L+%?A S&6?"+*3
M$>?,&. http://lsm.immunix.org.
24. Loscocco, P. and S. Smaller. I%*&#")*+%#
F,&A+.,& S?BB$"* ;$" S&6?"+*3 P$,+6+&7 +%*$ *2& L+%?A

OB&")*+%# S37*&5. in FREENI` T")61 $; *2& 2__1
USENI`S A%%?), T&62%+6), C$%;&"&%6&. 2001.
25. Goldberg, I., D. Wagner, R. Thomas, and E.
Brewer, A S&6?"& E%9+"$%5&%* ;$" U%*"?7*&> H&,B&"
ABB,+6)*+$%7 --- C$%;+%+%# *2& W+,3 H)61&", in P"$6.
1eeW USENI` S&6?"+*3 S35B$7+?5. 1996.
26. Alexandrov, A.D., P. "miec, and ".
Schauser. C$%72c A C$%;+%&> EA&6?*+$% E%9+"$%5&%*
;$" I%*&"%&* C$5B?*)*+$%7. in USENI` A%%?),
T&62%+6), C$%;&"&%6&. 1999.
27. Bosilca, G., F. Cappello, A. Djilali, G.
Fedak, T. Herault, and F. Magniette, P&";$"5)%6&
E9),?)*+$% $; S)%>.$A+%# T&62%+E?&7 ;$" P&&"-*$-
P&&" C$5B?*+%#. 2002, LRI-CNRS and Paris-Sud
University.
28. Dike, J. A U7&" M$>& P$"* $; *2& L+%?A
K&"%&,. in USENI` A%%?), L+%?A S2$C6)7&)%>
C$%;&"&%6&. 2000. Atlanta, GA.
29. L+%?A A>9)%6&> R$?*+%#)%> T");;+6
C$%*"$,: http://lartc.org.
30. Lao, L.L., H. St. John, R.D. Stambaugh,
A.G. "ellman, and W. Pfeiffer, R&6$%7*"?6*+$% $;
C?""&%* P"$;+,& P)")5&*&"7)%> P,)75) S2)B&7 +%
T$1)5)17. Nucl. Fusion, 1985. @L: p. 1611.

